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Abstract

Blackbox polynomial identity testing (PIT) affords ‘extreme variable-bootstrapping’
(Agrawal et al, STOC’18; PNAS’19; Guo et al, FOCS’19). This motivates us to study
log-variate read-once oblivious algebraic branching programs (ROABP). We restrict width of
ROABP to a constant and study the more general sum-of-ROABPs model. We give the first
poly(s)-time blackbox PIT for sum of constant-many, size-s, O(log s)-variate constant-width
ROABPs. The previous best for this model was quasi-polynomial time (Gurjar et al, CCC’15;
CC’16) which is comparable to brute-force in the log-variate setting. Also, we handle
unbounded-many such ROABPs if each ROABP computes a homogeneous polynomial.

Our new techniques comprise– (1) an ROABP computing a homogeneous polynomial
can be made syntactically homogeneous in the same width; and (2) overcome the hurdle of
unknown variable order in sum-of-ROABPs in the log-variate setting (over any field).

2012 ACM CCS concept: Theory of computation– Algebraic complexity theory, Fixed
parameter tractability, Pseudorandomness and derandomization; Computing methodologies–
Algebraic algorithms; Mathematics of computing– Combinatoric problems.
Keywords: identity test, hitting-set, ROABP, blackbox, log variate, width, diagonal, derandom-
ization, homogeneous, sparsity.

1 Introduction
Polynomial Identity Testing (PIT) is the problem of testing whether a given multivariate
polynomial is identically zero or not. The input polynomial to be tested is usually given in a
compact representation– like an algebraic circuit or an algebraic branching program (ABP). The
PIT algorithm is said to be efficient if its time complexity is polynomial in the input size of algebraic
circuit resp. ABP. There are two main types of PIT algorithms– blackbox or whitebox. A blackbox
PIT algorithm tests the zeroness of input polynomial using only evaluations of circuit, resp. ABP,
over field points. However, a whitebox algorithm is allowed additional access to look ‘inside’
the circuit or ABP. The set of points H over which a blackbox PIT algorithm evaluates is also
commonly known as a hitting-set. PIT admits a simple yet efficient randomized blackbox algorithm
due to Polynomial Identity Lemma [Sch80, Zip79, DL78]. The primary focus of research in PIT is
to derandomize it and get a poly-time deterministic blackbox algorithm. The problem of PIT also
has interesting connections with circuit lower bounds [HS80, KI04, Agr05, AGS19] and many other
well known problems like matching [MVV87, FGT17], primality testing [AKS04], polynomial
factoring[KSS14] and polynomial equivalence [DdOS14]. Refer to [SY10, Sax09, Sax14, Sap16]
for detailed surveys on PIT and lower bounds.

The model in focus for this paper is that of read-once oblivious ABPs (ROABPs) which
is a popular special class of ABPs. An ABP is defined using a layered directed graph with a
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unique source and sink vertex. The graph has edges only among consecutive layers. Each edge is
directed from one layer to the next and has some linear polynomial as its weight. The weight
of a path is product of edge weights along the path. The polynomial computed by the ABP is
then simply the sum of all weighted paths from source to sink. The length of an ABP is the
length of the longest path from source to sink and width of an ABP is the maximum possible
number of vertices in a layer. An ABP is called read-once oblivious (ROABP) if each variable
is read in only one layer and each edge in a layer is labelled with a univariate (of arbitrary
degree) in its corresponding variable. Equivalently, an ROABP of width w can be viewed as a
product of n matrices f(x) = D1(xπ(1)) ·D2(xπ(2)) . . . Dn(xπ(n)) where D1(xπ(1)) ∈ F1×w[xπ(1)],
Di(xπ(i)) ∈ Fw×w[xπ(i)] for 2 ≤ i ≤ n− 1 and Dn(xπ(n)) ∈ Fw×1[xπ(n)]. Here, π is a permutation
on the set {1, 2, . . . , n} and it describes what we call the variable order of an ROABP.

In the whitebox regime, ROABP has a famous poly-time PIT algorithm [RS05]. However, in
the blackbox regime, we only have quasi-poly-time PIT algorithms [FS13b, FSS14, AGKS15] and
no known poly-time algorithms. The recent (variable-)Bootstrapping results [AGS19, KST19,
GKSS19] tell us that it suffices to focus on PIT for extremely low-variate algebraic circuits. In
the new light, one can ask for a poly-time blackbox PIT for log-variate ROABPs. Even this
question is open. One can also ask for blackbox PIT of ROABPs with restriction on the width
parameter. In [GKS17] they address this question and give a poly-time blackbox PIT for constant
width ROABPs. However their algorithm works only for known variable order and for fields
of characteristic either zero or sufficiently large. The combined restrictions on variables and
width still gives interesting sub-models. Eg. [AGS19, Thm.22] shows that even solving PIT for
log-variate width-2 ABPs will almost solve the complete PIT problem.

The sum of ROABPs model was also studied by researchers in PIT. For a constant number
of ROABPs, [GKST16] give the first poly-time whitebox, and only a quasi-poly time blackbox
PIT algorithm. One can then ask for poly-time blackbox PIT for sum of ROABPs under the
restriction of constant width. This problem is also open. What if we also restrict the number of
variables? It is a nontrivial model as the degree remains arbitrary. This brings us to the question
of poly-time blackbox PIT for sum of constantly-many, constant-width, log-variate ROABPs.
We answer this question in the affirmative.

Blackbox PIT for sum of constantly-many, log-variate constant-width ROABPs is in poly-time.

Furthermore, if these ROABPs compute homogeneous polynomials then we can drop the ‘constantly-
many’ restriction.

An ABP is the algebraic analog of boolean branching program (BP). Barrington’s Theorem
[Bar89] proves that the complexity class NC1 is captured by width-5 branching programs of
polynomial size. An ROABP is the algebraic analog of a special branching program called
oblivious binary decision diagram (OBDD); also called read-once ordered branching program
(ROBP). The problem of PIT, or finding hitting-sets, for ROABPs is the algebraic analog
of finding pseudorandom generators (PRG) for OBDD which is a well-studied open problem
[Nis92, INW94, RR99, IMZ12, BCG18, FK18, HZ18]; being related to the RL=L question.
Blackbox PIT for sum of ROABPs can be seen as the algebraic analog of PRG for XOR of
OBDDs [GKST16, Sec.2.4]. See [SW97, GM96, BW98] for PRGs of XOR of OBDDs. In the
log-variate boolean setting, PRG for XOR of OBDDs is trivial, since one can simply try all
2n fixings of the boolean function f : {0, 1}n → {0, 1}. In the algebraic setting however, a
polynomial can have arbitrary individual degree, thus making PIT a highly nontrivial problem.

1.1 Our results
The sum of ‘few’ constant-width ROABPs model is more expressive than that of a constant-width
ROABP. Even a sum of two width-3 ROABPs cannot be computed by a single constant-width
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ROABP as pointed out in Fact 1.

Theorem 1 (Sum of ROABPs). Let P be a set of n-variate polynomials, over a field F, computed
by a sum of c-many ROABPs, each of width-r and size-s. (The variable order of each ROABP is
unknown.) Then, blackbox PIT for P can be solved in poly(sc, rn3c) time.

Remarks– 1) If c, r = O(1) and n = O(log s), then the stated time-complexity is poly(s).
Alternatively, for super-constant width r = so(1), the complexity remains poly(s)-time up to
n = logr s = ω(1).

2) For log-variate, the prior best complexity was > sn = sΩ(log s), which is super-polynomial
in the input-size. It is achieved by brute-force based on the Polynomial Identity Lemma.

3) [GKST16] gave a non-trivial blackbox PIT, in the general n-variate regime, for sum of
constantly-many ROABPs. Their complexity is > sc2

c log s, which is super-polynomial time; even
under the restrictions of constant-c, constant-width and log-variate.

4) [GKS17] gave a poly-time blackbox PIT for c = 1: a single constant-width ROABP
without the restriction of log-variate. However, their algorithm assumes the knowledge of variable
order. Moreover, it works only for fields of zero/large characteristic. However, our algorithm
is efficient, in the log-variate setting, and neither requires the knowledge of variable order nor
special characteristic.

In Theorem 1, c, the number of ROABPs, is assumed to be constant to get efficient blackbox
PIT. We could allow an arbitrary c, if each ROABP computes a homogeneous polynomial.

Theorem 2 (Sum of Homog. ROABPs). Let P be a set of n-variate polynomials, over a field F,
computed by a sum of c-many ROABPs, each of width-r and size-s, each computing a homogeneous
polynomial. (The variable order of each ROABP is unknown.) Then, blackbox PIT for P can be
solved in poly(crn, s) time.

Remarks– 1) If r = O(1) and n = O(log s), then the stated time complexity is poly(cs)–
polynomial in the input-size.

2) Without the restriction of homogeneity, the model subsumes the diagonal depth-3 model
(note: poly-time blackbox PIT for

∑∧∑
is open). This can be seen using the duality-trick of

[Sax08], together-with [FSS14] variable-reduction map, which will convert a diagonal depth-3
model into sum of width-1 log-variate ROABPs (& unbounded c). See Appendix A for details.

[AFS+16] defined a model called k-pass ABP. An ABP is called an oblivious ABP if for every
layer, edge labels are univariate polynomials in only a single variable. An oblivious ABP is said
to be a k-pass ABP if there exists a permutation π on {1, 2, . . . , n} such that the ABP reads
each variable k-times in the order: xπ(1), . . . , xπ(n), xπ(1), . . . , xπ(n), . . . , xπ(1), . . . , xπ(n).

Corollary 3 (k-pass ABP). Let P be a set of n-variate polynomials, over a field F, computed by
a sum of c, k-pass ABPs, each of width-r and size-s. Moreover, variable order of each k-pass
ABP is unknown. Then, blackbox PIT for P can be solved in poly(sc, rkn3c) time.

Remark. If c, r, k = O(1) and n = O(log s), then the stated time complexity is poly(s).

1.2 Previous works and motivation
ABPs: It is well known that ABPs subsume algebraic formulas. In turn, algebraic formulas
subsume constant depth circuits (see [BOC92] and [Nis91, Lem.1]). Surprisingly, it was shown
by a series of work that PIT for general circuits reduces to PIT for depth-3 circuits (

∑∏∑
)

[Bre74, VSBR83, AV08, Koi12, Tav15, GKKS16] (See Appendix B for definitions). In this paper
we shall work with a special case of ABPs, called ROABPs. This is a natural first model to
attack before solving the more general ABP model.
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A single ROABP model is also highly non-trivial. In fact, PIT for log-variate ROABP
subsumes PIT for the diagonal depth-3 model (See Appendix A). [RS05] gave the first poly-time
whitebox PIT for non-commutative ABPs which also works for ROABPs. [FS13b] gave the
first quasi-polynomial time blackbox PIT for ROABPs with known variable order. [AGKS15]
gave a quasi-polynomial time blackbox PIT for general unknown order ROABPs. [GKST16]
studied the sum of ROABPs model, which is much more general. In fact, it can be shown that
it subsumes the multilinear depth-3 model, for which a poly-time blackbox PIT is still open
[AGKS15, GKST16].

Log-variate: There has been a recent line of work on ‘Bootstrapping variables’ in algebraic
circuits. [AGS19] prove that solving blackbox PIT for circuits that depend only on the first
log◦c s variables is sufficient to solve blackbox PIT for general circuits. Here c is a constant and
log◦c is a composition of c logarithms. [KST19, GKSS19] further strengthened the results to
ultimately show that even saving on one evaluation point from the brute-force hitting-set of
constant-variate algebraic circuits would solve general PIT.

The well known diagonal depth-3 model is one of the lower hanging fruits in PIT. [FGS18]
were able to separate the variable parameter from size, to give the first poly-time blackbox PIT
for log-variate diagonal depth-3 circuits. The natural extension is to solve blackbox PIT for
log-variate ROABPs. In fact, it can be shown that PIT for log-variate commutative ROABPs
implies PIT for diagonal depth-3 model using the results of [FS13a, FSS14]. See Appendix A for
details.

Constant width: The sum of constant-width ROABPs model is also quite non-trivial as evident
from Fact 1. In part 2 of [KNS16, Thm.7], they construct g using an explicit family of 3-regular
expander graphs such that g is computed by a multilinear depth-3 circuit with top fan-in two
but requires a single ROABP of 2Ω(n) width to compute it. Careful inspection of the proof tells
us: g can also be computed by a sum of just two width-3 ROABPs of size Θ(n). Even in the
log-variate setting, g will require a single ROABP of super-constant width; which earlier lacked a
poly-time blackbox PIT. We go around this fundamental obstruction in Theorem 1.

Fact 1. [KNS16, Thm.7] There is an explicit family of 3n-variate multilinear polynomials
{gn}n≥1 which is computable by sum of two width-3 ROABPs of size Θ(n), but any single
ROABP computing g must have width 2Ω(n).

PIT for various models: Researchers have found poly-time or quasi-poly-time blackbox
PIT algorithms for a variety of other restricted models. For example, Sparse PIT (

∑∏
or

depth-2) [BOT88, KS01, AB03], special depth-3 circuits [DS07, KS07, Sax08, KS09, KS11, SS11,
SS12, dOSV16, FGS18], special depth-4 circuits [ASSS12, BMS13, SSS13, For15, KS16a, KS16b,
PSS16], set-multilinear circuits [RS05, FS12, ASS13], ROABP related models [JQS10, FS12,
FSS14, AFS+16], and certain non-commutative models [GGOW16, LMP16].

Efficient PRGs have also been constructed for several special OBDDs– constant-width, regular,
permutation [BRRY14, BDVY13, Ste12, De11, KNP11, BV10].

PIT also has implications in Geometric Complexity Theory (GCT). Refer to [Mul12b, Mul12a]
for details. Mulmuley shows that solving blackbox PIT for diagonal depth-3 model is equivalent
to derandomization of Noether’s Normalization Lemma for certain explicit algebraic varieties.
The concept of Waring rank, which has well-known connections in complexity theory, is also
closely tied with homogeneous diagonal depth-3 model [IK99, Lan17, CHI+18].

1.3 Proof techniques
Syntactic homogeneity for ROABP: Inspired by circuits we define syntactic homogeneity
for ROABP (Definition 6). We prove that if a degree-d homogeneous polynomial has an ROABP
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of width-r, then it also has a syntactic homogeneous ROABP of the same width, and in the
same variable order (Theorem 7). Recall that if one applies the usual homogenization trick, for
circuits/ABP [SY10, Thm.2.2], then the ROABP width blows up to O(rd2); making the width
non-constant! Our new technique helps solve blackbox PIT for a constant-width log-variate
ROABP; but also seems independently interesting.

Going beyond log-support concentration: Say, we consider sum of two constant-width
log-variate ROABPs. The blackbox PIT algorithm of [GKST16] for sum of two ROABPs uses
log-support concentration. They essentially prove that if a variable-shift log-support-concentrates
a single ROABP, then it also log-support-concentrates sum of two ROABPs. However, in our
log-variate setting, log-support concentration is a triviality and does not help in devising a
nontrivial blackbox PIT. Instead, we develop a technique to directly use the hitting-set for a
log-variate ROABP to get a hitting-set for sum of two such ROABPs (Section 4).

1.4 Proof ideas
Proof idea of Theorem 2: Let f be a d-degree, n = O(log s)-variate polynomial computed
by an ROABP of constant width r and size s. Let f [d] be the degree-d homogeneous part of f .
We show that f [d] also has an ROABP of width ≤ r (Lemma 19). In our Structure Theorem 7,
we show that f [d] can also be computed by a syntactically homogeneous ROABP of width ≤ r.
It provides us with a sparsity upper bound of rn for f [d] (Lemma 8). Now, we can use sparse
PIT map to get a poly-time blackbox PIT for f (Lemma 9). In Theorem 2, we are dealing with
sum of ROABPs, where each ROABP computes a homogeneous polynomial. Thus, each ROABP
computes a sparse polynomial and therefore the total sparsity of the sum is also polynomially
bounded. This gives us the required poly-time blackbox PIT (proof in Section 3).
Proof idea of Theorem 1: Let us discuss the simpler case of blackbox PIT of A+B, where
A resp. B is computed by an n-variate ROABP of width-r, in unknown (& different) variable
order. This sketch can be extended to blackbox PIT for sum of c ROABPs (Section 4.2).

The PIT algorithm in [GKST16] for sum of two ROABPs uses the dependency equations
from A (Definition 5). Suppose the variable order of A is xπ(1) < . . . < xπ(n). Their algorithm
iteratively ‘builds’ the ROABP for B in this variable order of A. If A 6= −B, then (essentially)
we will encounter the first variable, say xπ(k), where B does not follow some dependency equation
of A. This acts as a certificate of non-zeroness of A+B. This process can be done in poly-time
in the whitebox setting.

In blackbox setting, the variable orders of both ROABPs are unknown and thus this idea
cannot be implemented as it is. [GKST16] took the log-support-concentration route for their
blackbox algorithm; which takes quasi-polynomial time. It is as bad as the brute-force complexity
in our log-variate setting; so we need a new idea.

If A 6= −B, we know that the certificate of B not satisfying the dependency equations exists.
Due to the ample 2n-time available in log-variate setting, we essentially search for this certificate
in poly-time by going over all prefixes xπ(1) < . . . < xπ(k) and checking the satisfiability of the
dependency equations. Really going over all prefixes would take n! > ω(2n) time; so instead we
only go over all (k − 1)-size subsets of [n]. This is because we are going to apply a sparse PIT
map on the prefix variables (Claim 10) and hence the order within the prefix-subset does not
matter.

We intend to map the prefix-variables to univariates in t1 (Claim 10); and map the suffix-
variables to a univariate in t2 (Claim 11). Thus, reducing the variables to three (Lemma 12).
During the variable-reduction, the violation of dependency equations gets preserved as our maps
are based on the blackbox PIT for a single ROABP of width O(r3). The latter is indeed available
to us by Lemma 9. The details and the proof are in Section 4.
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The proof of Corollary 3 is an easy consequence of Theorem 1; since [AFS+16] showed that a
constant-pass ABP of constant-width can be converted into a constant-width ROABP.

2 Notations and Preliminaries
2.1 Notations

We follow some of the notations from [GKST16]. Let [n] denote the set {1, 2, . . . , n}. Let
x = (x1, x2, . . . , xn) be a tuple of n-variables. xk or x≤k will denote the tuple of first k variables
(x1, x2, . . . , xk) and x>k will denote the tuple of remaining variables (xk+1, xk+2, . . . , xn). Let π
denote the variable order of an ROABP, where π : [n]→ [n] is some permutation. This means the
variables are read in the order (xπ(1), xπ(2), . . . , xπ(n)). Let F[x] denote the ring of polynomials
in n-variables over some field F. Let Fw×w[x] denote the ring of polynomials in n-variables over
the matrix algebra of w × w matrices.

Let A(x) ∈ F[x] be a polynomial in n variables of degree d. Let a denote an exponent vector
(a1, a2, . . . , an) ∈ Nn such that xa denotes the monomial

∏n
i=1 x

ai
i . Let coeff(A)(xa) ∈ F denote

the coefficient of the monomial xa in A(x). The sparsity of a polynomial A(x)– sparsity(A) –is
defined as the number of monomials with non-zero coefficients in A. We use A[d] to denote the
degree-d homogeneous part of A(x) and A[<d] to denote the remaining lower-degree terms.

Let y and z be a partition of x such that |y| = k, then the coefficient polynomial A(y,a), also
known as partial-derivative polynomial, denotes the coefficient of monomial ya in A(x) which is
a polynomial in F[z]. Similarly A(z,b) ∈ F[y] is the coefficient of monomial zb in A(x).

Warning: A(x,a) and coeff(A)(xa) are different. For example if A(x) = x1x2 + x2
2 + 2x1, then

A(x1,1) = x2 + 2 while coeff(A)(x1) = 2. Note that A(x) can be expressed in multiple ways:

A(x) =
∑

a∈{0,1,...,d}n
coeff(A)(xa) · xa, and also,

A(x) =
∑

a∈{0,1,...,d}k
A(y,a) · ya

A polynomial A(x) ∈ Fw×w[x] is called a matrix polynomial, where the coefficients are w×w
matrices of field constants. The coeff.space of A(x) is defined as the span of all the coefficients of
A: spanF{coeff(A)(xa) | a ∈ {0, 1, . . . , d}n}. We can also define it for any prefix of variables.

For a set of polynomials P, their F-span is defined as: spanFP :=
{∑

A∈P αA.A | αA ∈ F
}
.

The set P is called F-linearly independent if
∑

A∈P αA.A = 0 implies αA = 0 for all A ∈ P.
dimFP is then defined as cardinality of the largest F-linearly independent subset of P.

2.2 Nisan’s characterization
Algebraic circuit, ABP, ROABP and hitting-set map (or blackbox PIT) are formally defined in
Appendix B. Also, refer to [For14, Gur15, Kor16] for excellent surveys on ROABPs.

Let A(x) be a polynomial of degree d computed by an ROABP. Let the variable order be
(xπ(1), xπ(2), . . . , xπ(n)). Let y and z be a partition of the variables such that y is a k length prefix
of the variable order, that is, yi = xπ(i) for i ∈ [k] and z is the remaining suffix. Nisan [Nis91]
gave an exact width characterization for ROABPs. We will mostly follow the presentation of
[GKST16] for this characterization; as it is a constructive proof.

Lemma 4. [GKST16, Lemmas 2.2, 2.5] Let A(x) be a polynomial of individual degree d, com-
puted by an ROABP of width w with variable order (xπ(1), xπ(2), . . . , xπ(n)). For k ∈ [n],
y = (xπ(1), xπ(2), . . . , xπ(k)) be the prefix of length k; and z be the suffix of length n− k. Then,
dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w.
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Conversely, let A(x) be a polynomial of individual degree d, with x = {x1, . . . , xn} and
w ≥ 1, such that for any k ∈ [n] and yk = (xπ(1), xπ(2), . . . , xπ(k)), we have dimF{A(yk,a) | a ∈
{0, 1, . . . , d}k} ≤ w. Then, there exists an ROABP of width w for A(x) in the variable order
(xπ(1), xπ(2), . . . , xπ(n)).

We state the definition of characterizing dependencies almost as stated in [GKST16].

Definition 5. [GKST16, Defn.2.4] Let A(x) be a polynomial of individual degree d with variable-
order (xπ(1), xπ(2), . . . , xπ(n)). Suppose, for each k ∈ [n] and y = (xπ(1), xπ(2), . . . , xπ(k)),
dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w. For k ∈ [n], we define the spanning set spank(A)

and the dependency set dependk(A) as subsets of {0, 1, . . . , d}k as follows. For k = 0, let
depend0(A) := ∅ and span0(A) := {ε}, where ε = () denotes the empty tuple. For k ∈ [n], let

• dependk(A) := {(a, j) | a ∈ spank−1(A) and 0 ≤ j ≤ d}, i.e. dependk(A) contains all
possible extensions of the tuples in spank−1(A).

• spank(A) ⊆ dependk(A) is a subset of size ≤ w, such that for any b ∈ dependk(A), the
polynomial A(y,b) is in the span of {A(y,a) | a ∈ spank(A)}.
Such dependencies of {A(y,a) | a ∈ dependk(A)} over {A(y,a) | a ∈ spank(A)} comprise the
characterizing set of dependencies (certifying the width of A).

3 Sum of Homogeneous ROABPs: Proof of Theorem 2
In this section, we shall prove a structure theorem for the lead homogeneous (highest degree)
part of a polynomial computed by an ROABP. It will ultimately give us the poly-time blackbox
PIT promised in Theorem 2. We call an ROABP syntactically homogeneous if for any two
nodes (u, v) in the ROABP, as source and sink respectively, the polynomial computed from
u v is homogeneous. Clearly, a syntactically homogeneous ROABP computes a homogeneous
polynomial of ‘low’ width, but the converse is not true because some edge label in its ROABP may
be inhomogeneous or some intermediate path may be computing an inhomogeneous polynomial.

Throughout this paper, we work with unknown variable order of ROABP. If the ROABP
computes a polynomial over F[x], we assume an arbitrary variable order (y1, y2, . . . , yn), where
for all i ∈ [n], yi = xπ(i) for some unknown permutation π : [n]→ [n].

Definition 6 (Syntactic homogeneity). Let f(x) ∈ F[x] be computed by an ROABP D(x) of
width r in variable order (y1, . . . , yn). Let D(x) =:

∏n
i=1Di(yi), where D1(y1) ∈ F1×r[y1],

Dn(yn) ∈ Fr×1[yn], and Di ∈ Fr×r[yi] for 1 < i < n.
We call ROABP D(x), syntactically homogeneous, if for all 1 ≤ i < n, each entry in the

subproduct row-vector D≤i :=
∏i
j=1Dj ∈ F1×r[y≤i], is a homogeneous polynomial; and so is each

entry in the subproduct column-vector D>i :=
∏n
j=i+1Dj ∈ Fr×1[y>i].

In the following theorem, we prove that if a homogeneous polynomial f is computed by an
ROABP of width w, then it can also be computed by a syntactically homogeneous ROABP
of width r ≤ w. More precisely, the optimal width ROABP for f constructed using Nisan’s
characterization (Lemma 4) has width ≤ r and we prove that it is syntactically homogeneous.

Theorem 7 (Structure Theorem). Let f(x) ∈ F[x] be a degree d homogeneous polynomial
computed by an ROABP C(x) of width w in the variable order (y1, . . . , yn). Then, f also has
a syntactically homogeneous ROABP D(x) =

∏n
i=1Di(yi) of optimal width r ≤ w in the same

variable order. Moreover, ∀i ∈ [n], each entry in Di(yi) is merely a monomial in yi.
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Proof. If f is computed by a width w ROABP C(x), it will also have an optimal ROABP
D(x) of width r ≤ w constructed using Nisan’s characterization (Lemma 4). Here, we follow
the construction as presented in [GKST16, Lem.2.5]. For all i ∈ [n − 1], we can write f as
f = D≤i ·D>i =

∑r
j=1 gj(y≤i)hj(y>i). Fix i. Nisan’s characterization picks the entries of D≤i

to be r F-linearly independent polynomials g1, . . . , gr ∈ F[y≤i] and entries of D>i to another r
F-linearly independent polynomials h1, . . . , hr. By construction, for each j ∈ [r], hj =: f(y≤i,ej),
where {e1, . . . , er} := spani(f). Observe that if f is a homogeneous polynomial, then so is each
coefficient polynomial hj = f(y≤i,ej). Since f is a homogeneous polynomial and hj ’s are F-linearly
independent homogeneous polynomials, this forces each gj to be also homogeneous. We prove
this non-trivial fact separately as Lemma 18 (Appendix C). Thus, for all i ∈ [n− 1], each entry
in D≤i and D>i is a homogeneous polynomial.

We now prove the second part of the theorem, that every entry in each intermediate matrix
Di(yi) is a monomial in yi. ForD1, consider the partitionD = D1·D>1. By syntactic homogeneity
proved above, each entry of D1 is homogeneous and thus is of the form y

bj
1 (single monomial),

for some bj ≥ 0. Similarly, each entry of Dn is also homogeneous, when considering the partition
D = D≤n−1 ·Dn. For 1 < i < n, consider D = D<i ·Di ·D>i. This looks like:

D =
[
f1 f2 · · · fr

]

g11 g12 · · · g1r

g21 g22 · · · g2r

...
...

. . .
...

gr1 gr2 · · · grr



h1

h2

...
hr

 (1)

where f1, . . . , fr ∈ F[y<i], entries of current focus g11, . . . , grr ∈ F[yi], and h1, . . . , hr ∈ F[y>i].
By syntactic homogeneity of D<i, each fk for k ∈ [r], is homogeneous. Also, by Nisan’s
characterization f1, . . . , fr are F-linearly independent. Note that each entry ofD≤i is inner product
of D<i = [f1, . . . , fr] with appropriate column of Di. Wlog, let us consider the inner product with
the first column. By syntactic homogeneity of D≤i, we know that G := f1g11 + f2g21 + . . .+ frgr1
is homogeneous. Then, by Lemma 18 again, for each k ∈ [r], gk1 is also a homogeneous
polynomial in yi. Similarly, for every other column in Di. This shows that each matrix entry gij
is homogeneous (& univariate); hence it is a monomial.

As a simple corollary of our structure theorem, we get the following sparsity bound for a
homogeneous polynomial computable by a width r ROABP.

Lemma 8 (Sparsity bound). If f(x) is an n-variate homogeneous polynomial of width-r, then
sparsity(f) ≤ rn.

Proof. Let D(x) be the width-r ROABP computing f over the field F. By Theorem 7, wlog we
can assume D(x) to be syntactically homogeneous with width ≤ r. Thus, each edge label in the
ROABP D is a univariate monomial. In that case, each path from source to sink computes only
a single monomial. The number of paths from source to sink is at most rn. Hence the polynomial
computes a sum of at most rn monomials.

Using just the Sparsity Lemma 8, we could now finish the proof of Theorem 2.

Proof of Theorem 2. Let A(x), in P, be =: A1(x) + A2(x) + . . . + Ac(x), where each Ai(x) is
a homogeneous polynomial. By Lemma 8, ∀i ∈ [c], sparsity(Ai) ≤ rn. The total sparsity of
A(x) is then bounded by crn. One can thus simply apply the sparse PIT map (Lemma 17)
for polynomials of degree d and sparsity ≤ crn; which gives the required time-complexity of
poly(n, d, crn) = poly(crn, s).
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We extend the above methods to prove another important property (Lemma 19, Appendix
C): if a polynomial has width-r, then so does its lead homogeneous part. This immediately gives
us blackbox PIT for a log-variate constant-width ROABP (possibly inhomogeneous).

Lemma 9 (Single ROABP). Let P be a set of polynomials, over a field F, computed by an
ROABP of width-r and size-s (in n-variables & unknown variable order). Then, blackbox PIT
for P can be solved in poly(s, rn) time.

Proof. Let f ∈ P be of degree d. By Lemma 19, the ROABP width for f [d], the lead homogeneous
part of f , is also upper bounded by r. Now, by Lemma 8, sparsity(f [d]) ≤ rn. Let Φ be the
efficient blackbox PIT map for polynomials of sparsity ≤ rn (Lemma 17). Let t be a new variable.
Note that f 6= 0⇒ coeff

(
f(tx1, tx2, . . . , txn)

)
(td) = f [d] 6= 0.

In poly(s, rn) time, we can ‘extract’ coeff
(
f(tx1, . . . , txn)

)
(td) = f [d](x) using the blackbox

of f ; by interpolating f(tx1, . . . , txn) wrt t. Then, we can apply the non-zeroness preserving map
Φ on this extracted coefficient; which completes the blackbox PIT for f in poly(s, rn) time.

4 Sum of ROABPs: Proof of Theorem 1
We start with the sum of two ROABPs, A+B; the blackbox PIT hence developed would extend
to sum of c ROABPs in the next Section 4.2 .

4.1 Sum of two ROABPs
Testing A+B = 0 is same as testing equivalence of A and B. Let A,B ∈ F[x] be polynomials of
individual degree d, computed by width-r ROABPs, each of size s in n variables. Suppose A
is computed in some unknown variable order (y1, y2, . . . , yn), where yi = xπ(i) for each i ∈ [n],
for some permutation π : [n]→ [n]. We can assume that variable order of B is different from A,
since otherwise A+B can be computed by a single ROABP of width ≤ 2r, and we are done by
Lemma 9. The main idea in [GKST16] is to construct an ROABP for B in the variable order of
A, by using the characterizing dependencies of A (Defn. 5). Note that the width of an ROABP
can blow up exponentially when expressed in a different variable order (see [For15]). We can
assume that B does not have ROABP of width r in the variable order of A since otherwise, we
will again get a single ROABP of width 2r computing A+B in which case we are done.

Thus we are in the setting: A 6= −B, and B does not have a width r ROABP in the order
(y1, y2, . . . , yn). By Lemma 4, there will be a minimum index k ∈ [n] such that dimF{A(y≤k,a) | a ∈
{0, 1, . . . , d}k} ≤ r, but dimF{B(y≤k,a) | a ∈ {0, 1, . . . , d}k} > r. In the language of dependency
equations, there exists an exponent b ∈ dependk(A) such that:

A(u,b) =
∑

a∈ spank(A)

αb,a ·A(u,a) (2)

B(u,b) 6=
∑

a∈ spank(A)

αb,a ·B(u,a) (3)

where u := y≤k = (y1, y2, . . . , yk), and for each b ∈ dependk(A): αb,a ∈ F are the dependency
coefficients defined by Equation 2. By the dependencies we could assume that B has the same
ROABP as A for the first k − 1 layers. We will design a map Φ1 for the first k − 1 variables of
both A and B; such that Φ1(B) continues to violate the dependency equations of Φ1(A) at the
yk-layer (Claim 10 below).
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For a polynomial f ∈ F[y], let us use a short-hand f(y
a1
1 y

a2
2 ) ∈ F[y3, . . . , yn] to denote the

coefficient polynomial of monomial ya11 ya22 in f , which is same as f((y1,y2),(a1,a2)) in the earlier
notation.

Claim 10 (Prefix map). Follow the notation in Eqns.2 & 3. Let Φ1 : F[y1, . . . , yn]→ F[t1, yk, yk+1,
. . . , yn] be a hitting-set map for any ROABP of width ≤ r on first k − 1 variables (Φ1 fixes
yk, . . . , yn). Let degt1(Φ1(A)) and degt1(Φ1(B)) be at most d′; let E denote the set {0, 1, . . . , d′}.
Let span2(Φ1(A)) be a basis of size ≤ r such that there exists a set of constants {γb,a}, with
F-dependencies, for every two-tuple b ∈ E2 :

Φ1(A)
(t

b1
1 y

b2
k )

=:
∑

a∈ span2(Φ1(A))

γb,a · Φ1(A)(t
a1
1 y

a2
k ) . (4)

Then, there exists b ∈ E2 with a dependency violation in Φ1(B), i.e.

Φ1(B)
(t

b1
1 y

b2
k )
6=

∑
a∈ span2(Φ1(A))

γb,a · Φ1(B)(t
a1
1 y

a2
k ) . (5)

Proof. Let ROABP for A be D =:
∏n
i=1Di(yi). Since B follows dependency equations of A for

first (k− 1) layers, we write B =: D1D2 . . . Dk−1 ·D′≥k (by proof of Lemma 4 using Definition 5).
Then, Φ1(B) =: Φ1(D1D2 . . . Dk−1)(t1) ·D′≥k(y≥k). For the sake of contradiction, suppose Φ1(B)
follows the dependency equations of Φ1(A) in the yk layer too. This means ∀b, LHS equals RHS
in Equation 5. Since |span2(Φ1(A))| ≤ r, this means Φ1(B) has a width r ROABP in the first
two layers (t1 and yk). In other words, coeff.space dimension for first two layers of Φ1(B) is ≤ r.
Observe that then by Lemma 13, Φ1 preserves the coeff.space dimension of the first k layers of B
too.

Thus, dimF{B(y≤k,a) | a ∈ Ek} = dimF{Φ1(B)((t1,yk),a) | a ∈ E2} ≤ r. This contradicts our
choice of k being the first variable up to which B does not have a width r representation, which
meant dimF{B(y≤k,a) | a ∈ Ek} > r (as in Lemma 4).

In the following claim, we study a map Φ2 for y>k variables such that we preserve Equations
4 and 5 under the action of map. Thus, eventually the image polynomial becomes trivariate!

Claim 11 (Suffix map). Continue with the notation of Claim 10. Let Φ2 : F[t1, yk, yk+1, . . . , yn]→
F[t1, yk, t2] be a hitting-set map for any ROABP of width ≤ r2(r + 1) on last n− k variables (Φ2

fixes t1, yk). Then, there exists b ∈ E2 such that:

Φ2 ◦ Φ1(A)
(t

b1
1 y

b2
k )

=
∑

a∈ span2(Φ1(A))

γb,a · Φ2 ◦ Φ1(A)(t
a1
1 y

a2
k ) (6)

Φ2 ◦ Φ1(B)
(t

b1
1 y

b2
k )
6=

∑
a∈ span2(Φ1(A))

γb,a · Φ2 ◦ Φ1(B)(t
a1
1 y

a2
k ) . (7)

Proof. Equation 6 in this claim directly follows by applying map Φ2 on Equation 4; it is true
∀b ∈ E2. Now we shall prove that in Equation 5 the difference polynomial g := Φ1(B)

(t
b1
1 y

b2
k )
−∑

a∈ span2(Φ1(A)) γb,a · Φ1(B)(t
a1
1 y

a2
k ) 6= 0 can be computed using a single ROABP of width at

most r2(r + 1).
Let σ represent the original variable order of B: xσ(1) < . . . < xσ(n). By assumption, B had

a width r representation for the first (k − 1) layers in the variable order of A (y1 < . . . < yn);
implying B = [P1, P2, . . . , Pr] · [Q1, Q2, . . . , Qr]

ᵀ, where ∀i ∈ [r], Pi ∈ F[y<k] and Qi ∈ F[y≥k].
Recall that, by construction [GKST16, Lem.2.5], Qi’s are certain coefficient polynomials of B;
Qi = B(y<k,ai) where {a1, . . . ,ar} = spank−1(A). Now, by Lemma 16, each Qi has a width
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r ROABP in the variable order inherited from B, that is, σ (y≥k). Clearly, for each a ∈ E,
Φ1(B)(t1,a) =

∑r
i=1 coeff(Φ1(Pi))(t

a
1) ·Qi; implying Φ1(B)(t1,a) ∈ spanF{Q1, . . . , Qr}. For each

a ∈ E, let Φ1(B)(t1,a) =: Q′a, where Q′a is the suitable F-linear combination of Q1, . . . , Qr.
Observe that any F-linear combination

∑r
i=1 ciQi, where each ci ∈ F, can be computed by a

single ROABP of width r2; by placing ROABP of each Qi in parallel. Thus, for each a ∈ E, Q′a
also has an ROABP of width r2.

Moving one variable forward, again by applying Lemma 16 on each Q′a, we know that for
each b ∈ E, Q′a(yk,b)

:= (Q′a)(yk,b) also has an ROABP of width r2; in the variable order σ (y>k).
We can rewrite our polynomial g as g = Q′b1(yk,b2) −

∑
a∈ span2(Φ1(A)) γb,a ·Q′a1(yk,a2).

The number of summands in g is |span2(Φ1(A))|+ 1 ≤ r + 1, and each summand in g has
a width r2 ROABP. Hence, g can be computed by a single ROABP of width ≤ r2(r + 1); by
placing each of the width r2 ROABPs in parallel.

Finally, since Φ2 is a hitting-set map for any (n− k)-variate ROABP of width ≤ r2(r + 1), it
will preserve the non-zeroness of g; giving us the inequality in Eqn. 7.

Using Claims 10 and 11, we can design a single map Φ for nonzero A+B such that Φ(A) has
a trivariate ROABP of width ≤ r in the order (t1, yk, t2), whereas Φ(B) does not. This would
prove Φ(A) 6= −Φ(B); eventually certifying that A+B 6= 0.

Lemma 12 (Sum of two). Let A(x) and B(x) be two polynomials of individual degree d,
each computed by an ROABP of width r. Let A have variable order (y1, y2, . . . , yn), where
∀i ∈ [n], yi := xπ(i), for some permutation π : [n] → [n]. Then, one can design a map
Φ : F[x1, . . . , xn] → F[t1, yk, t2], for some k ∈ [n], in poly(d, r3n) time and deg(Φ(A + B)) ≤
poly(d, r3n), such that A+B = 0 if and only if Φ(A+B) = 0.

This implies a poly(s, rn)-time blackbox PIT for sum of two size-s ROABPs.

Proof. Observe that the maps Φ1 and Φ2, the way defined above, act on disjoint set of variables.
Let Φ := Φ2 ◦ Φ1. Trivially, A+B = 0 implies Φ(A+B) = 0. Conversely, A+B 6= 0 implies
that A 6= −B. If B has a width ≤ r ROABP in the variable order of A then A+B has width
≤ 2r; in which case we are done by Lemma 9.

So, we assume that B requires width > r ROABP in the variable order of A. Let us now
work with the k and the variable order y1, . . . , yn as in the above proved claims. Claims 10 and
11 together prove that Φ(A) is an ROABP of width r, in the variable order (t1, yk, t2); while
Equation 7 points out that Φ(B) does not have width r ROABP in the same variable order.
Thus, Φ(A+B) 6= 0.

Let us now estimate the cost of constructing Φ. For Claim 10 to hold, we only need to
‘guess’ the prefix set {y1, . . . , yk−1} and the variable yk. For each k ∈ [n], we go over all k-sized
subsets of [n], and try k choices (of yk) for each subset. The number of possibilities is at most∑n

k=1 k
(
n
k

)
=
∑n

k=1 n
(
n−1
k−1

)
≤ n2n−1.

A hitting-set map Φ1, for any width-r (k − 1)-variate ROABP, can be designed in time
T1 ≤ poly(d, rk) (invoke Lemma 9 for k − 1 variables). The remaining n− k variables are fixed
once we guess the correct choice of prefix. Since in Claim 11, Φ2 needs to be a hitting-set map for
any ROABP of width r3 + r2, it can be designed in time T2 ≤ poly(d, r3(n−k)) (invoke Lemma 9
for n− k variables).

With all the subset guesses, overall, our correct map Φ = Φ2 ◦ Φ1 can be designed in time
T ≤ n2n−1 · (T1 + T2) ≤ poly(d, r3n) (for r ≥ 2). The individual degree of polynomial in the
image of Φ is bounded by poly(d, r3n) using Lemmas 9 and 17. After designing Φ, one can use
the trivial hitting-set for trivariate polynomials as the hitting-set for A+B.

We show below that any hitting-set map for a prefix of variables, also preserves the coeff.space
dimension up to all subsequent variables.
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Lemma 13 (Coeff.space preservation). Let D(x) = D1(y1) · · ·Dk−1(yk−1) · Dk(yk) · D′(y>k)
be matrix-product for a polynomial; assume that the prefix D1(y1) · · ·Dk−1(yk−1) is a matrix-
product of width r, Dk ∈ Fr×r′ [yk] (say r ≤ r′), and D′ ∈ Fr′×1[y>k]. Let Ψ : F[y1, . . . , yn] →
F[t, yk, yk+1, . . . , yn] be a hitting-set map for any width r ROABP in the first k − 1 variables. (Ψ
fixes yk, . . . , yn.) Then, Ψ preserves the k-prefix coeff.space of D, that is:

dimF{D(y≤k,a) | a} = dimF{Ψ(D)((t,yk),a) | a} .

Proof. Consider the matrix product for D(y) at (k − 1)th layer: D = D<k · Dk · D′, where
D<k :=

∏k−1
i=1 Di ∈ F1×r[y<k]. Wlog let the entries of D<k ·Dk be the r′ F-linearly independent

polynomials given by Nisan’s characterization (Lemma 4): D<k ·Dk =: [P1, P2, . . . , Pr′ ]. Similarly
entries of D′ are r′ linearly independent polynomials given by coefficient-extraction of D: D′ =:
[Q1, Q2, . . . , Qr′ ]

ᵀ. View Ψ as mapping the first k variables to F[t, yk] (keeping the rest n − k
variables unchanged). For ci ∈ F (i ∈ [r′]) not all zero, we have:

c1P1 + c2P2 + . . .+ cr′Pr′ 6= 0 . (8)

Note that the ‘polynomial-vector’ D<k ·Dk has a width r′ ROABP (with r′ output gates) which
is derived from the ‘partial’ ROABP of D. In the same width, we could represent the polynomial
c1P1 + c2P2 + . . .+ cr′Pr′ =: P .

Since Ψ is a hitting-set map (univariate in t) for any width-r (k − 1)-variate ROABP, it
preserves dimF(yk) of the r coordinates of D<k(y<k). Consequently, Ψ (now bivariate in t, yk)
preserves dimF of the r′ coordinates of D<k(y<k) ·Dk(yk). In other words, Ψ is also a hitting-set
map (bivariate) for any width ≤ r′ k-variate ROABP.

Since P is indeed of width r′ (& k-variate), therefore, Ψ preserves the non-zeroness of
Equation 8; implying F-linear independence of Ψ(P1), . . . ,Ψ(Pr′) ∈ F[t, yk]. Moreover, Ψ(D) =
[Ψ(P1), . . . ,Ψ(Pr′)] · [Q1, Q2, . . . , Qr′ ]

ᵀ. Whence, dimF{Ψ(D)((t,yk),a) | a} = dimF{D(y≤k,a) | a}
= r′.

4.2 Sum of c ROABPs
Let the input be sum of c polynomials A1(x), A2(x), . . . , Ac(x), each of individual degree d,
computed by ROABPs of width r. Again, we will assume the variable orders for each ROABP
to be different, lest we reduce to a smaller sum instance. The simple recursive strategy used in
[GKST16] is to reduce it to an instance of sum of two ROABPs. LetA := A1 andB := A2+. . .+Ac.
Suppose A has r-width ROABP in some unknown variable order (y1, y2, . . . , yn), where yi := xπ(i),
for each i ∈ [n]. Thus, we get dependency equations for A, as in Equation 2. If the input sum is
non-zero then B will not follow some dependency of A.

Note that unlike the ‘sum of two’ case, B is not computed by a single ROABP of width r.
This is not a cause of worry, as we shall see now. Define Q := B(u,b) −

∑
a∈ spank(A) γb,a ·B(u,a),

where u := (y1, . . . , yk). Since B = A2 + . . .+Ac, we get

Q =
c∑
i=2

(
Ai(u,b) −

∑
a∈ spank(A)

γb,a ·Ai(u,a)

)
. (9)

Now, as explained in Section 4.1, for each of the c − 1 summands in Equation 9, we have an
ROABP of width r(r + 1). We apply Φ1 on first k − 1 variables and get analogous dependency
equations for Φ1(A), Φ1(B) (and Φ1(Q) 6= 0) as in Claim 10.

Φ1(Q)
(t

b1
1 y

b2
k )

=
c∑
i=2

(
Φ1(Ai)(t

b1
1 y

b2
k )
−

∑
a∈ span2(Φ1(A))

γb,a · Φ1(Ai)(t
a1
1 y

a2
k )

)
. (10)
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In Equation 10, each of the c− 1 summands has an ROABP of width r2(r + 1) ≤ 2r3 (See proof
of Claim 11). This effectively reduces the problem, of designing Φ2, to an instance of blackbox
PIT for sum of c− 1 ROABPs of width O(r3), which can be solved recursively. We formalize
this process in the following lemma.

Lemma 14 (Sum of c). Let A1(x), A2(x), . . . , Ac(x) be c polynomials of individual degree d, each
computed by an ROABP of width r. Then, in poly(dc, rn3c) time, one can design a hitting-set
(univariate) map Ψ, with degree of Ψ(

∑c
i=1Ai) bounded by poly(dc, rn3c), such that

∑c
i=1Ai = 0

if and only if Ψ(
∑c

i=1Ai) = 0.

Proof. We prove by induction on c. Base case for c = 2 has been proved earlier in Lemma 12.
Suppose A = A1 has the unknown variable order (y1, . . . , yn) where yi = xπ(i) for each i ∈ [n].
Let yk be the first layer where B = A2 + . . . + Ac ‘deviates’ from A. Thus, by Claim 10, we
get map Φ1 and Equation 10, which is a sum of c− 1 ROABPs of width ≤ 2r3. By induction
hypothesis, we can design a (univariate) map Φ2 for Φ1(Q)

(t
b1
1 y

b2
k )

, which acts on the remaining
(n− k) variables, and preserves non-zeroness of the polynomial. Thus, altogether Φ := Φ2 ◦ Φ1

will preserve non-zeroness of A+B; since Φ(A) will satisfy all its dependency equations but Φ(B)
would continue to violate one. This implies A+B = 0 if and only if Φ(A+B) = 0. Note that
Φ’s image is trivariate; we can trivially redefine it so that the image is univariate (by Polynomial
Identity Lemma or Kronecker map) and call this map Ψ.

Let T (c, r) denote the time complexity of designing Ψ, where T (2, r) ≤ poly(d, rn) by Lemma
12. Like in proof of Lemma 12, for each choice of prefix (y1, y2, . . . , yk) and Φ1, we will design
Φ2 to verify non-zeroness of the corresponding Equation 10. By induction hypothesis Φ2 can be
designed in ≤ T (c− 1, 2r3) time. Thus, we get a recursive formula for designing Ψ (which is a
univariate map),

T (c, r) ≤ n2n · poly(d, rn) · T (c− 1, 2r3) .

As a solution, we get T (c, r) ≤ nc · 2cn · poly(dc, rn3c) ≤ poly(dc, rn3c) (for r ≥ 2).
Similarly, we get a recurrence for the degree of the image of Ψ: S(c, r) ≤ poly(d, rn) · S(c−

1, 2r3). We get the solution S(c, r) ≤ poly(dc, rn3c).

Finally after having developed all the machinery, we complete the proof of Theorem 1. We
also prove Corollary 3, which is an easy consequence of Theorem 1.

Proof of Theorem 1. Let the polynomial be f ∈ F[x] = A1 + . . .+Ac, computed by c ROABPs
mentioned in the hypothesis of Theorem 1. By Lemma 14 we have a variable reduction map
Ψ : F[x1, . . . , xn]→ F[t] that preserves the non-zeroness of f , i.e. f = 0⇔ Ψ(f) = 0. As argued
in Lemma 14, this map Ψ is constructible in poly(dc, rn3c)-time and the individual degree of
Ψ(f) is similarly bounded.

Thus, one can evaluate Ψ(f) ∈ F[t], on sufficiently many field points, since it is univariate and
the degree is polynomially bounded. This gives the blackbox PIT algorithm with the required
time-complexity.

Proof of Corollary 3. By [AFS+16, Lem.2.5], a polynomial computed by a width-r, degree-d,
k-pass ABP can also be computed by a width-r2k ROABP of degree-dk, and the same underlying
variable order. Thus for a sum of c such k-pass ABPs, we can apply Theorem 1 to achieve the
stated time-complexity.
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5 Conclusion and Future Directions
We discover a structure theorem which helps us in bounding the sparsity of the lead homogeneous
part of an ROABP. This upper bound is polynomially bounded when the ROABP is constant-
width and log-variate. We apply it to get two important results: Lemma 9 and Theorem 2. In
the log-variate setting, we then show how to solve blackbox PIT for sum of constantly-many such
ROABPs by using blackbox PIT of a single such ROABP.

Note that we need constant width in Theorem 1 only because poly-time blackbox PIT for an
unbounded-width (log-variate) ROABP is not known as of now. In fact, our algorithm for sum
of c ROABPs in Section 4 can directly employ any given PIT algorithm of an unbounded-width
ROABP:

Meta-Lemma. If there exists a poly-time blackbox PIT algorithm for a log-variate ROABP,
then there exists a poly-time blackbox PIT algorithm for sum of c-many log-variate ROABPs (for
c constant).

In the context of this work and previous related works, a variety of open problems arise:

• Design a poly(s)-time blackbox algorithm for (log s)-variate, size-s ROABP. This will
also solve diagonal depth-3 model [FSS14]. Wlog, ROABP can also be assumed to be
syntactically homogeneous (Theorem 7, Lemma 19).

• For a polynomial computed by an ROABP, we proved our Structure Theorem 7 only for
the lead-degree homogeneous part. (Here leading can be either highest degree or lowest
degree.) Can we get a similar structure theorem for intermediate degree homogeneous
components? We do know that width upper bound in Lemma 19 works only for leading
homogeneous components. For example, f = (x1 + 1)(x2 + 1) has a width 1 ROABP, and
so does its leading components f [2] = x1x2 and f [0] = 1, but f [1] = x1 + x2 requires width
2. However, for general polynomials can we still get a ‘weaker’ upper bound on the ROABP
width of intermediate homogeneous components?

• In Theorem 2, can we remove the restriction of each ROABP computing a homogeneous
polynomial? If we can work with inhomogeneous polynomials also, then that would solve
diagonal depth-3 model (Appendix A). Design a poly(rn, c, d)-time blackbox PIT for sum
of c ROABPs; each of width r computing an n-variate polynomial of degree d?

• Design a poly(n, d)-time blackbox algorithm for an n-variate, d-degree polynomial; com-
puted by ROABP of constant-width in unknown variable order, which works for all fields.
This problem is open, since [GKS17] algorithm only works for known variable order and
for fields with zero/large characteristic.
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A Proofs from Section 1– Introduction

Lemma 15. If we have poly-time blackbox PIT for sum of width-1, log-variate (commutative)
ROABPs, then we have poly-time blackbox PIT for diagonal depth-3 circuits.

Proof Sketch. [FS13a, FS13b] showed that diagonal depth-3 circuits have ‘low’ dimension partial-
derivative space, and that such polynomials have a nonzero log-support monomial. Under the
promise of such a log-support monomial, we can apply variable-reduction map of [SV09], used in
[FSS14] or the map of [Vai15], to get from n to O(log n) variables. Both these maps preserve
non-zeroness.

After applying the log-variate map, we will get to power-of-sums-of univariates form which we
can convert to sum-of-products-of-univariates form using the duality-trick of [Sax08]. Moreover,
each product-of-univariates has a width-1 ROABP; thus we have represented as sum of width-1
log-variate ROABPs (which are trivially commutative!).

B Definitions from Section 2– Preliminaries

B.1 Algebraic circuit

An algebraic circuit C, in F[x], is defined as a directed acyclic graph with a unique root-vertex
computing the polynomial. Each leaf-vertex is labelled by a literal– a variable or a field constant.
Edge u→ v is labelled with a field constant, which gets multiplied to the polynomial computed
by vertex u and fed as input to vertex v. Each internal node-vertex is either labelled by + or
×. A + node computes the sum of all the incoming polynomials, while × node computes the
product. The in-degree of a vertex is called its fan-in; and out-degree its fan-out. Size of an
algebraic circuit is the size of the graph. Depth of the circuit is the length of the longest path
from root to a leaf node.

An algebraic circuit with fan-out 1 is called an algebraic formula.
Algebraic circuits can be assumed to be layered with alternating layer of + and × nodes, with

the root node to be addition gate. A depth-4 circuit is of the form ∑∏∑∏. Thus, it computes a
polynomial of the form f =

∑k
i=1

∏di
j=1 fij , where each fij is a sparse polynomial.

A depth-3 circuit ∑∏∑ computes a polynomial of the form f =
∑k

i=1

∏di
j=1 lij , where each

lij is a linear polynomial. A diagonal depth-3 circuit ∑∧∑, computes a polynomial of the form
f =

∑k
i=1 l

di
i , where each li is a linear polynomial.
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B.2 Algebraic branching program

An algebraic branching program (ABP) is a layered directed graph with a unique source vertex s
and sink vertex t. The ABP of depth-d has d+1 layers– V0, V1, . . . , Vd, where first layer V0 =: {s},
and last layer Vd =: {t}. The directed edges go from Vi to Vi+1, for 0 ≤ i ≤ d − 1; and are
labelled with linear polynomials from F[x]. The weight of a path p is W (p) :=

∏
e∈pW (e), where

W (e) denotes the weight (or label) of an edge. The final polynomial f(x) computed by the ABP
is then simply the sum of weight of all paths from source to sink: f(x) :=

∑
path p :s tW (p).

The length of the ABP is the number of layers from s to t. The ABP has width w, if for 0 ≤ i ≤ d,
|Vi| ≤ w. Size of the ABP is its graph size.

ABP also has an alternate algebraic representation in terms of matrix product. Let the set
of vertices in ith-layer Vi be Vi =: {vi,j | j ∈ [w]}. Then, f(x) =

∏d
i=1Di, where D1 ∈ F1×w[x],

Di ∈ Fw×w[x] (for 2 ≤ i ≤ d− 1), and Dd ∈ Fw×1[x] such that the entries are:

D1(j) := W (s, v1,j) , for j ∈ [w]

Di(j, k) = W (vi−1,j , vi,k) , for j, k ∈ [w] and 2 ≤ i ≤ d− 1

Dd(k) = W (vd−1,k, t) , for k ∈ [w] .

By default W (u, v) := 0, if there is no edge (u, v) in the ABP.

B.3 Read-once oblivious algebraic branching program (ROABP)

An ABP is called read-once oblivious ABP (ROABP) if each variable appears in only one layer
and instead of linear polynomials, edge weights are univariate polynomials. So, ROABP has
length equal to the number of variables n. The variable order (xπ(1), xπ(2), . . . , xπ(n)) of ROABP
is the order of variables as they appear in edge weights between the layers i− 1 to i, for i ∈ [n]
in the ROABP. Size of the ROABP is the sum of its graph size and the individual degrees (of
the univariate edge-labels).

In the matrix product form, D(x) =
∏n
i=1Di, where D1 ∈ F1×w[xπ(1)], Di ∈ Fw×w[xπ(i)]

for 2 ≤ i ≤ n − 1, and Dn ∈ Fw×1[xπ(n)]. One can also view Di as a univariate polynomial
with coefficients coming from w-dimensional vectors or w × w matrices. For ROABP D(x), D≤i
denotes the subproduct

∏i
j=1Dj , and D>i denotes

∏n
j=i+1Dj .

We need the following lemma in Section 4.1, which is not difficult to prove (simply inspect
the required coefficient).

Lemma 16. [GKST16, Lem.2.3] Let A(x) be a polynomial of individual degree d, computed by
an ROABP of width w. Let y = (xi1 , xi2 , . . . , xik) be any k variables of x. Then, the coefficient
polynomial A(y,a) can be computed by an ROABP of width w, for every a ∈ {0, 1, . . . , d}k.
Moreover, all these ROABPs have the same variable order, inherited from the variable order of
the ROABP for A.

B.4 Hitting-set map

A hitting-set for a class P of n-variate, d-degree polynomials over F, is defined as the set H ⊆ Fn
of field points such that, for all nonzero f ∈ P, there exists at least one point α ∈ H which
hits f , i.e. f(α) 6= 0. The notion of ‘efficient blackbox PIT’ is equivalent to ‘a small-sized
explicit hitting-set’. Any P has a hitting-set of size (d+ 1)n; by brute-force derandomization of
Polynomial Identity Lemma [Sch80, DL78, Zip79].

Most of the fast blackbox PIT algorithms give a variable-reduction map Φ : F[x] → F[y]
which converts the input polynomial f to a constant-variate polynomial Φ(f) ∈ F[y1, . . . , yk]
such that f = 0 if and only if Φ(f) = 0. Let D be the individual degree of Φ(f); thus Φ gives us
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a hitting-set of size (D + 1)k by brute-force derandomization for Φ(f). In other words, we get a
poly-time blackbox PIT for f when Φ can be designed in poly-time and its individual degree D
is also polynomially-bounded. We call such a map as hitting-set map, or blackbox PIT map, in
our paper. It is also commonly known as a k-seed hitting-set generator (hsg) in literature. See
[SV09, For15] for details on hitting-set and generators.

We now state the efficient Kronecker map, or the sparse PIT map, which gives poly-time
blackbox PIT for the family of sparse polynomials. A polynomial f is called s-sparse if the
number of monomials with nonzero coefficients in f are upper bounded by s.

Lemma 17 (Sparse PIT). [Kro82, AB03, AGKS15] Let M be the set of all monomials, in n
variables x, with individual degree ≤ d. For any s, there is a (deterministic) polynomial-time
constructible set of N := ns log(d+ 1) weight-functions w: x→ [2NlogN ], such that

for any set A ⊆ M2 of s pairs of monomials, at least one of the weight functions w ∈ w
separates all the pairs in A; i.e., for all (m,m′) ∈ A, w(m) 6= w(m′).

C Proofs from Section 3 – Structure Theorem

We need the following lemma in the proof of our Structure Theorem 7.

Lemma 18. Let y and z be a partition of variable set x. Suppose f ∈ F[x] is a homogeneous
polynomial of degree d having a variable disjoint decomposition as f =

∑r
i=1 figi, where for all

i ∈ [r], fi ∈ F[y] and gi ∈ F[z]. Suppose f1, . . . , fr are F-linearly independent and each fi is also
a homogeneous polynomial. Then, for each i ∈ [r], gi is also a homogeneous polynomial.

Proof. For the sake of contradiction, suppose there exists a gk, for some k ∈ [r], which is not
homogeneous. Let fk be its corresponding polynomial which is homogeneous and has degree, say
dk. Since f is homogeneous of degree d, let gk = g

[d−dk]
k + g

[6=(d−dk)]
k , where g[d−dk]

k is the degree
(d− dk) homogeneous part of gk and g[ 6=(d−dk)]

k is the rest of the polynomial. We will prove that
latter part has to be zero.

Let za be any monomial in g
[ 6=(d−dk)]
k with coefficient ck 6= 0, where degree of monomial

|a|1 6= d−dk. The nonzero term fk ·ckza in f has to get cancelled since it is of degree dk+ |a|1 6= d.
Observe that this term can get cancelled only by product of za with those fi that have degree
dk (simply by variable disjointness & degree comparison). For ` ≤ r, let fi1 , fi2 , . . . , fi` be the
polynomials in {f1, . . . , fr} of degree exactly dk. Let coeff(gi)(z

a) =: ci, for i ∈ [r]; where ci can
be possibly zero except for ck. Then,

fi1 · (ci1za) + fi2 · (ci2za) + . . .+ fi` · (ci`z
a) = 0

⇒ ci1fi1 + ci2fi2 + . . .+ ci`fi` = 0 .

Since ck 6= 0, this contradicts F-linear independence of f1, . . . , fr. Thus, g
[6=(d−dk)]
k is zero. Hence,

∀k ∈ [r], gk is a homogeneous polynomial; of degree d− deg(fk).

In the following lemma we prove that the lead homogeneous part of a polynomial f can
be computed by an ROABP in the same width as that of f . For our paper, we only prove
for the highest degree homogeneous component, but similar proof holds for the lowest degree
homogeneous component.

Lemma 19 (Homogeneous-part width). Let f(x) = f [d] + f [<d] be a polynomial of degree-d, in
F[x1, . . . , xn]; where f [d] is the (lead) degree-d homogeneous component of f , and f<[d] is the rest
of the polynomial f . Then, width(f [d]) ≤ width(f), in the same variable order.
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Proof. Let f [d] have an ROABP in a variable order y1 < y2 < . . . < yn, where yi = xπ(i)

for some permutation π : [n] → [n]. Let width(f [d]) =: k. For a fixed ` ∈ [n], consider
the partition {y1, . . . , y`} t {y`+1, . . . , yn}. Wlog, there are k coefficient polynomials of f [d]–
g1, . . . , gk ∈ F[y>`] –that are F-linearly independent. For some e1, . . . , ek ∈ {0, 1, . . . , d}`, these
are precisely gi =: (f [d])(y≤`,ei), for each i ∈ [k]. We claim that the k coefficient-operators
e1, . . . , ek ∈ {0, 1, . . . , d}`, that worked for f [d], will also ‘work’ for f .

Formally, the set of polynomials {f(y≤`,e1), . . . , f(y≤`,ek)} will also be F-linearly independent.
Let hi be the polynomial (for each i ∈ [k]):

f(y≤`,ei) = (f [d])(y≤`,ei) + (f [<d])(y≤`,ei) =: gi + hi .

Here, ∀i ∈ [k], hi is of degree strictly less than that of gi. Observe that the coefficient-operators
(f [d])(y≤`,ei) respect homogeneity. Therefore, ∀i ∈ [k], gi is a nonzero homogeneous polynomial
of degree di := d− |ei|1. Since g1, . . . , gk are F-linearly independent, any F-linear combination
c1g1 + c2g2 + . . .+ ckgk is nonzero, whenever ci ∈ F are not all zero. Now, we prove our claim
that the polynomials g1 + h1, . . . , gk + hk are F-linearly independent.

Suppose not, then there exist c1, . . . , ck ∈ F not all zero such that

c1(g1 + h1) + . . .+ ck(gk + hk) = 0

⇒ c1g1 + . . .+ ckgk = −(c1h1 + . . .+ ckhk) . (11)

Let d′ := maxi{deg(gi) | ci 6= 0}. Note that LHS above is a nonzero polynomial of degree exactly
d′. This is because gi are homogeneous; so, if degree of LHS is < d′, then all the gi of degree d′

have to cancel among themselves. This cannot happen since they are linearly independent. Thus,
LHS is of degree d′. But, RHS is a polynomial of degree < d′; since, deg(hi) < deg(gi) ≤ d′,
for each i ∈ [k]. This contradicts Eqn.11, thus proving {g1 + h1, . . . , gk + hk} to be F-linearly
independent. We conclude that width(f) ≥ k.
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